Esquema de las integrales. Para ver los ejercicios con soluciones visita las otras páginas.
$\int x^n = \dfrac{x^{n+1}}{n+1}$ | $\displaystyle \int \frac{1}{x} = \displaystyle ln|x|$ |
$\int \mathcal{e}^x = \mathcal{e}^x$ | $\int a^{x} = \dfrac{a^x}{ln a}$ |
$\int ln x = x lnx – x$ | $\int log_a x = \dfrac{x lnx – x}{ln a}$ |
$\displaystyle \int \frac{1}{mx+n} = \frac{1}{m}ln|mx+n|$ | $\displaystyle \int \frac{1}{cosh^2\,x} = tanh\,x$ |
$\displaystyle \int \frac{1}{1+x^2} = arctan\,x$ | $\displaystyle \int \frac{1}{\sqrt{x^2+1}} = argsenh\,x$ |
$\displaystyle \int \frac{1}{\sqrt{1-x^2}} = arcsen\,x$ | $\displaystyle \int \frac{1}{\sqrt{x^2-1}} = argcosh\,x$ |
$\int cos\,x = sen\,x$ | $\displaystyle \int \frac{1}{sen^2\,x} = \frac{-1}{tan\,x}$ |
$\int sen\,x = -cos\,x$ | $\int senh\,x = cosh\,x$ |
$\displaystyle \int \frac{1}{cos^2\,x} = tan\,x$ | $\int cosh\,x = senh\,x$ |